Section 3.3 Computing Limits: Graphically
ΒΆ
limxββ5βf(x)=2.
Similarly, as x gets closer and closer β5 from the right, then f(x) approaches β3, so
limxββ5+f(x)=β3.
As the right-hand limit and left-hand limit are not equal at β5, we know that
limxββ5f(x) does not exist.
x=-2: Observe that at x=β2 there is a closed circle at 0, thus f(β2)=0. From the graph we see that as x gets closer and closer to β2 from the left, then f(x) approaches 3.5, so
limxββ2βf(x)=3.5.
Similarly, as x gets closer and closer β2 from the right, then f(x) again approaches 3.5, so
limxββ2+f(x)=3.5.
As the right-hand limit and left-hand limit are both equal to 3.5, we know that
limxββ2f(x)=3.5.
Do not be concerned that the limit does not equal 0. This is a discontinuity, which is completely valid, and will be discussed in a later section.
We leave it to the reader to analyze the behaviour of f(x) for x close to β1 and 0.
Summarizing, we have:
f(β5) is undefinedf(β2)=0f(β1)=β2f(0)=β2limxββ5βf(x)=2limxββ2βf(x)=3.5limxββ1βf(x)=0limxβ0βf(x)=β2 limxββ5+f(x)=β3limxββ2+f(x)=3.5limxββ1+f(x)=β2limxβ0+f(x)=β2 limxββ5f(x)=DNElimxββ2f(x)=3.5limxββ1f(x)=DNElimxβ0f(x)=β2
Exercises for Section 3.3.
Exercise 3.3.1.
Evaluate the expressions by reference to this graph:
-
\(\ds \lim_{x\to 4} f(x)\)
Answer\(\lim\limits_{x \to 4} f(x) = 8\) -
\(\ds \lim_{x\to -3} f(x)\)
Answer\(\lim\limits_{x \to -3} f(x) = 6\) -
\(\ds \lim_{x\to 0} f(x)\)
Answer\(\lim\limits_{x \to 0} f(x)\) DNE, since the left and right side limits are not the same. -
\(\ds \lim_{x\to 0^-} f(x)\)
Answer\(\lim\limits_{x \to 0^{-}} f(x) = -2\text{.}\) Note that this is not equal to \(f(0)\text{,}\) but is instead the value which \(f\) is approaching as \(x \to 0\) from the left. -
\(\ds \lim_{x\to 0^+} f(x)\)
Answer\(\lim\limits_{x \to 0^{+}} f(x) = -1\) -
\(\ds f(-2)\)
Answer\(f(-2) = 8\) -
\(\ds \lim_{x\to 2^-} f(x)\)
Answer\(\lim\limits_{x \to 2^{-}} f(x) = 7\) -
\(\ds \lim_{x\to -2^-} f(x)\)
Answer\(\lim\limits_{x \to -2^{-}} f(x) = 6\) -
\(\ds \lim_{x\to 0} f(x+1)\)
Answer\(\lim\limits_{x \to 0} f(x+1) = \lim\limits_{x \to 1} f(x) = 3\) -
\(\ds f(0)\)
Answer\(f(0) = -1.5\) -
\(\ds \lim_{x\to 1^-} f(x-4)\)
Answer\(\lim\limits_{x \to 1^{-}} f(x-4) = \lim\limits_{x \to -3^{-}} f(x) = 6\) -
\(\ds \lim_{x\to 0^+} f(x-2)\)
Answer\(\lim\limits_{x \to 0^{+}} f(x-2) = \lim\limits_{x \to -2^{+}} f(x) = 2\)
Exercise 3.3.2.
Evaluate the expressions by reference to this graph:
-
\(\lim\limits_{x\to -1} f(x)\)
Answer\(\lim\limits_{x\to -1} f(x) =\) DNE, since the left and right-side limits are not equal. -
\(\lim\limits_{x\to 0^+} f(x)\)
Answer\(\lim\limits_{x\to 0^+} f(x) = 2\) -
\(\lim\limits_{x\to 1} f(x)\)
Answer\(\lim\limits_{x\to 0^+} f(x) = 2\) -
\(f(1)\)
Answer\(f(1) = 0\) -
\(\lim\limits_{x\to 2} f(x)\)
Answer\(\lim\limits_{x\to 2} f(x) = 2\)